PARALLEL DATA STRUCTURES

ADVANCED SEMINAR

submitted by
Christoph Allig

NEUROSCIENTIFIC SYSTEM THEORY
Technische Universitat Munchen

Prof. Dr Jorg Conradt

Supervisor: Dipl.-Inf. Nicolai Waniek
Final Submission: 07.07.2015

www.manharaa.com




www.manharaa.com




TECHNISCHE UNIVERSITAT MUNCHEN EC%E,

m NEUROWISSENSCHAFTLICHE SYSTEMTHEORIE
PROF. DR. JORG CONRADT NST

2015-04-08
ADVANCED SEMINAR

Parallel Data Structures

Problem description:

Literature on parallel algorithms and data structures is vast. In fact, the literature has grown with
the advent of GPGPU computing just a few years ago. However, most of the literature targets SIMD
(single instruction, multiple data) hardware, which means that data structures are still sequential at
their heart.

In contrast to this, natural systems, and more recently new hardware, operates in a fashion which is
asynchronous, solving MIMD or MISD (multiple instruction multiple data, multiple instruction single
data) problems. As a consequence, we are interested in finding existing data structures that operate
in an asynchronous fashion, and their benefits or drawbacks when compared to other data structures.

The student shall research the state of the art of data structures for MIMD and MISD problems.

Hence, the student will have to

e |dentify key “ingredients” for parallel data structures.
e Give an overview of the most relevant of these and reference the related literature.
e Point out example problems for which these algorithms are highly suited.

As a plus, the student may implement one or more of the data structures to show examples, or think
about examples how to employ such data structures given special hardware, e.g. SpiNNaker.
This task requires

e a solid interest in parallel computing and
e some knowledge of theoretical computer science (e.g. O-Notation).

Supervisor:  Nicolai Waniek

(J. Conradt)
Professor

www.manaraa.com



www.manharaa.com




Abstract

This thesis elaborates on the challenges of designing, benefits and drawbacks of par-
allel data structures. After a short overview about computer architecture the most
relevant parallel data structures are surveyed. The main focus lies on techniques like
recursive star-tree, recurrence equations, MIMD algorithm and combination of syn-
chronous and asynchronous model that structure any problem that can be handled
in the ”"divide and conquer” manner. These approaches achieve high performance
and scalability. Furthermore we consider and evaluate the performance of several
implementations of the parallel data structures stack and queue. The best perfor-
mance is obtained by nonblocking algorithms. Finally we regard a programming
model based on nondeterminism and emergence imitating natural systems. These
systems solve complex problems and achieve robust behavior, even each individual
is following its own rule. For all the abovementioned techniques are given some
suitable applications.
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Chapter 1

Introduction

Due to the proliferation of multi-core processors in the last decade, new parallel data
structures for parallel algorithms has been investigated. Parallel data structures are
required for storing and organizing data accessed by multiple threads. Designing
parallel data structures is more difficult than their sequential counterparts because
threads executing concurrently may interleave their steps in many ways. To avoid
arbitrary outcome concurrency has to be considered in designing parallel data struc-
tures. As a result of concurrency it is difficult to verify the correctness of an imple-
mentation. Thus verification techniques like theorem prover or model checking can
be helpful. Designing parallel data structure also provides challenges with respect
to performance and scalability. The layout of processors, memory, data in memory
and the communication load all influence performance. The performance speedup S
of a parallel algorithm in comparison to its sequential one is bounded by Amdahl’s

law [Amd67]:

§—_— 1 (1.1)

Ty + l;rs

where r, denotes the work which can not be done in parallel and P the number of
processors. Scalability is the ability of an algorithm to handle a growing amount of
work in a capable manner [Bon00]. The O(N) notation is used to classify a algorithm
according to its scalability. Due to the fact that nowadays increasing capability of
computers is achieved by using multi-core processors, the use of parallel algorithms
and data structures is indispensable.

This paper begins with analyzing the most common computer architectures. After
that the paper surveys the most relevant parallel data structures and its key com-
ponents. Thereby their advantages and disadvantages are analyzed. Furthermore
algorithms are introduced using parallel data structures for solving some example
problems. Particularly, it is deferred to casting sequential data structures to concur-
rent ones, structures supporting to partition a complex problem into subproblems,
synchronizing techniques, as well as a concept based on nondeterminism and emer-
gence.
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Chapter 2

Computer Architecture

According to Flynn’s Taxonomy computer architecture as ”the structure of a com-
puter that a machine language programmer must understand to write a correct
program for a machine” [FK797] can be classified into four main categories:

e SISD (Single Instruction, Single Data)
e SIMD (Single Instruction, Multiple Data)
e MISD (Multiple Instruction, Single Data)

e MIMD (Multiple Instruction, Multiple Data)

BISD Instruction Pool HIMD |

Instruction Pool | MIAD Instruction Pool MIMD | Instruction Pool |

Ny A - [pul L.F
R A . [pul L.h
S N - [Pu L.ﬁ
i —F o L

(a) (b) (c)

——

Data Pool
Data Pool

Data Pool
-
H
o
H
Data Pool

(d)
Figure 2.1: The four proposed computer architectures by Flynn’s Taxonomy. (a)
SISD, (b) SIMD, (¢) MISD, (d) MIMD|[ET1]

SISD is a sequential computer which exploits no parallelism neither in instruction
nor in data streams. SIMD is a computer which exploits multiple data streams
against a single instruction stream. For example, a GPU. The benefits of SIMD

computer architecture are:
e simplicity of concept and programming

e regularity of structure
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8 CHAPTER 2. COMPUTER ARCHITECTURE

e casy scalability of size and performance

e straightforward applicability in a number of fields which demands parallelism
to achieve necessary performance

In this work the focus will be on MISD and MIMD. MIMD architecture consists of a
number of processors that function asynchronously and independently. According to
this, different processors may be executing different instructions on different pieces
of data. There are two types of MIMD architecture based on how MIMD processors
access memory:

e Shared Memory MIMD architecture: Any processor can directly access any
memory module via an interconnection network as observe on Fig. [2.2 (a).

e Distributed Memory MIMD architectures: Each pair of processor and memory
are building a processing element (PE). The PE’s are connected with each
other via an interconnection network as observe on Fig. (b).[KK13]

MIMD architecture is more flexible than SIMD or MISD architecture, but it’s more
difficult to create the complex algorithms that make these computers work. MISD

PEO PE1 PEn

MO M1 Mk

MO

Interconnection
Network

Interconnection Network

PO Pl | s Pn

(a) (b)

Figure 2.2: (a) Shared Memory MIMD Architecture (b) Distributed Memory MIMD
Architecture[FKT97]

architecture consists of multiple processors. Each processor uses a different algo-
rithm but uses the same shared input data. MISD computers can analyze the same
set of data using several different operations at the same time. There aren’t many ac-
tual examples of MISD computers, partly because the problems an MISD computer
can calculate are uncommon and specialized.[PPA]
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Chapter 3

Parallel Data Structure

3.1 Recursive Star-Tree

Berkman and Vishkin [BV93] introduced the recursive star-tree data structure which
allows for fast parallel computations O(a(n)) (a(n) is the inverse of the Ackermann
function) using an optimal number of processors on a concurrent-read concurrent-
write (CRCW) parallel random access machine (PRAM). Considering the assump-
tion - a very small number (O(log¥n)) for any constant i of processors can write
simultaneously each into different bits of the same word - these computations need
only constant time. Several algorithms can be obtained by application of recursive
star-trees:

1. lowest-common-ancestor (LCA) problem
2. level-ancestor problem

3. parenthesis matching problem

4. restricted-domain merging

5. almost fully-parallel reducibility

In the following the recursive star-tree data structure will be defined. A bal-
anced tree (BT)(m) with n leaves is a recursive tree in the sense that each of
its nodes holds a tree of the form BT (m — 1). The number of levels in BT (m) is
-1,
*lp_1(n) +1 = I,(n) +1. A node v at level 1 <[ < x[,,_1(n) + 1 has II’Z)‘—l(())
m—1"
children, if qull(n) = n. The total number of leaves in the subtree rooted at node

vis IV (n). Fig. displays the principle for a BT'(2).

To represent an application for the introduced data structure the LCA problem is
analyzed. Given a sequence of n vertices A = [ay, ..., a,] which is the Euler tour of
the input tree and the level for each vertex v in the tree. The Euler tour, that starts
and ends in the root of the tree, is obtained by replacing each edge (u,v) with two
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10 CHAPTER 3. PARALLEL DATA STRUCTURE

NUMBER OF | NUMBER LEVEL OF
CHILDREN OF LEAVES  THE TREE

BT(2)
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Figure 3.1: Balanced Tree (BT))(2) is a complete binary tree with n leaves

edges (u,v) and (v,u) and computing the successor for each edge. Finally the Euler
tour is stored in an array in a particular way to determine for each vertex in the
tree its distance from the root. According to the corollaries:

1. vertex w is an ancestor of vertex v, if [(u) < I(v) < r(u)

2. vertices u and v are unrelated (neither u is an ancestor of v nor v is an ancestor
of w), if r(u) <I(v) or r(v) < l(u)

3. if u and v are unrelated vertices, the LCA of v and v is the vertex whose level
is minimal over the interval [r(u),(v)] in A

the LCA problem can be solved by finding the following two indices in A:

e [(v), the index of the leftmost appearance in A
e 7(v), the index of the rightmost appearance in A

For processing the corollary 3, a restricted-domain range-minima problem can be
applied, because the difference between the level of each pair of successive vertices
in the Fuler tour is exactly one. The input for a general restricted-domain range-
minima problem is the integer k£ and array A = (ay, as, ..., a,) of integers, such that
the difference between each a;,1 < i < n and its successor a;,; is at most k. The
aim is to preprocess A so that any query MINTJi, j|,1 < i < j < n, requesting the
minimal element over the interval [, ..., a;], can be processed quickly. Below, there
is a brief description for the preprocessing algorithm for m = 2.

1. Partition A into subarrays of logn elements each.
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3.2. STACK AND QUEUE 11

2. Take the minimum in each subarray to build array B of size bgL‘n

3. Build a BT(2), whose leaves are the elements of B. For each internal node v
of BT'(2) there exists an array containing an entry for each leave of v in the
subtree rooted at v.

4. Build two arrays of size n each, one contains all prefix-minima (between [(v)
and a leaf of v) and the other all suffix-minima (between a leaf of v and r(v))
with respect to A.

Generally the algorithm preprocess in ¢m time, for some constant c, using nl3 (n) +
\/Enlm(n) processors. Processing any range-minimum query can be done in cm
operations.

Obviously, applying this data structure requires some additional effort to handle the
coherencies in a suitable manner. On the other side is the proposed data structure
applicable for a wide range of problems. It supports every problem that can be split
into subproblems according to the ”divide and conquer” manner. Algorithms using
this data structure can be regarded as "optimal” due to O(«a(n)).

3.2 Stack and Queue

Most multiprocessors are programmed by time-slicing processors among processes
to achieve acceptable response time and high utilization. Mutual exclusion locks
degrades the performance significantly on time-slicing programmed systems due
to the preemption of processes holding locks. In order to solve this problem two
strategies have been proposed: preemption-safe locking and nonblocking algorithms.
Preemption-safe locking techniques, e.g. [ELS88] or [MSLM91], allow the system ei-
ther to avoid or to recover the adverse effect of the preemption of lock-holding
processes. The nonblocking approach guarantees that at least one process of those
trying to update the data structure concurrently will succeed in completing its op-
eration within a bounded amount of time, regardless of the state of other processes.
Generally, they employ atomic primitives, e.g. compare-and swap (CAS), load-
linked (LL) and store-conditional (SC).

This chapter treats the parallel data structures Stack and Queue. In [MS98] and
[IMSO7] can be found further information on parallel data structures in contrast to
their sequential ones. There are treated: Heaps, Counters, Fetch-and-6 Structures,
Pools, Linked Lists, Hash Tables, Search Trees and Priority Queues.

A concurrent queue - a First-In-First-Out (FIFO) data structure - provides enqueue
and dequeue operations for addition and removal of entities. Fig. [MS98] shows
performance results for eight queue implementations on no-multiprogrammed system
and on multiprogrammed systems with two and three processes per processor:
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12 CHAPTER 3. PARALLEL DATA STRUCTURE

e usual single-lock algorithm using ordinary locks (single ordinary lock)

e usual single-lock algorithm using preemption-safe locks (single safe lock)
e two-lock algorithm using ordinary locks (two ordinary locks)

e two-lock algorithm using preemption-safe locks (two safe locks)

e nonblocking algorithm (MS nonblocking)

e PLJ nonblocking [PL.J94]

e Valois [Val95]

e Mellor-Crummey’s (MC blocking) [MC87]

The execution time is normalized to that of preemption-safe single lock algorithm.
The results show that as the level of multiprogramming increases, the performance
of ordinary locks and Mellor-Crummey’s blocking algorithm degrades significantly,
while the performance of preemption-safe locks and nonblocking algorithms remains
relatively unchanged. The two-lock algorithm allows more concurrency than the
single-lock, but suffers more with multiprogramming when using ordinary locks be-
cause the chances are larger that a process will be preempted while holding a lock
needed by other processes. With a multiprogramming level of 1 the two-lock al-
gorithm outperforms a single-lock when more than four processors are active. The
crossover point with levels of 2 and 3 occurs only for the preemption-safe locks at
six and eight processors, respectively. The best performance is provided by the non-
blocking algorithms, except of the Valois, which suffers from the complex overhead
of the complex memory management. The nonblocking algorithms are privileged by
no overhead of extra locks and invulnerable to interference from multiprogramming.

In the following the functionality of the nonblocking queue [MS9§] is analyzed exem-
plary. Fig. represents commented pseudocode for the structure and operations.
The queue is constructed by a singly linked list consisting of Head and Tail pointers.
Head points to a dummy node, which is the first node in the list. This allows more
concurrency and simplifies the special cases associated with empty and single-item
queues (a technique suggested by [Sit78]). Tail points to either the last or second
to last node in the list. In order to avoid ABA problem CAS with modification
counters is used. CAS compares the value of a shared memory location with the
expected value. If both values are equal, the shared memory location is assigned
a new value atomically. The ABA problem usually occurs when a thread reads a
memory location twice and the read value is both A. Between the two reads another
thread changes the value to B and restores the old value A. The first thread does
not recognize the hidden modification, which might lead to incorrect behavior of the
algorithm. The dequeue operation ensures that Tail does not point to the dequeued
node or to any of its predecessors to allow dequeuing processes to free and then reuse
dequeued nodes. Additionally, guarantying that values of pointers are unchanged is
important for consistency.
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Figure 3.2: Normalized execution time for 1000000 enqueue/dequeue pairs on a
multiprogrammed system, with multiprogramming levels of 1 (a), 2 (b), 3(c).[MS9§]

A concurrent stack - a Last-In-First-Out (LIFO) data structure - provides push
and pop operations for addition and removal of entities. Fig. [MS98] shows
performance results for four stack implementations:

e usual single-lock algorithm using ordinary locks (ordinary lock)

e usual single-lock algorithm using preemption-safe locks (preemption-safe lock)

e Treiber’s nonblocking algorithm [Tre86] (Treiber non-blocking)

e optimized nonblocking algorithm based on Herlihy’s general methodology [Her93]

(Herlihy non-blocking)

As soon as the level of multiprogramming increases, the performance of ordinary
locks degrades. The other three keep relatively constant. In all scenarios Treiber’s
algorithm achieves the best performance.

Treiber’s as well as Herlihy’s algorithm is implemented using a singly linked list
including a pointer to the head of the list. Each process owns a copy of the Head.
To successfully complete an operation the process has to use LL/SC to direct a
shared pointer to the copied Head of the process. The shared pointer denotes the
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14 CHAPTER 3. PARALLEL DATA STRUCTURE

structure pointer_t {ptr: pointer to node_, count: unsigned integer}
structure node_t {value: data type, next: pointer_t}
structure queuc.t {Head: pointer.t, Tail: pointer.t}

INITIALIZE(Q: pointer to qucuet)
node = new_node() # Allocate a free node

node—nextptr = NULL #Make it the only node in the linked list DEQUEUE(Q: pointer to queue., pvalue: pointer to data type): boolean
Q—Iead.ptr = Q—Tail.ptr = node # Both Head and Tail point to it DI: loop # Keep trying until Dequeue is done
D2: head = Q—1Head #Read Head
D3: tail = Q> Tail # Reud Tail
ENQUEUE(Q: pointer to queue.t, value: data type) D4: next = head ptr—next # Read Head.ptr—-snext
Bl node = new.-node() # Allocate a new node from the free list D5: if head == Q—Head # Are head, tail, and next consistent?
E2  node—value = value # Copy enqueucd value into node D6: if head ptr == il ptr it s queue empty or Tail falling behind?
E3: node—next.ptr=NULL # Set next pointer of node to NULL. D7: if nextptr == NULL #1s queue empry?
F4: loop # Keep trying until Enqueue is done D8: return FALSE # Queue is empty, couldn’t dequeue
E5: tail = Q—Tail # Read Tail. ptr and Tail.count together D9: endif
E6: next = tail ptr—next # Read next ptr and count fields together DIO: CAS(&Q— Tail, tail, [next.ptr, tail. count+1]) # Tail is falling behind. Try to advance it
ET: if tail == Q— Tail # Are tail and next consistent? DIl else #No need to deal with Tail
E8: if next.ptr == NULL # Was Tail pointing to the last node? # Read value before CAS, otherwise another dequeue might free the next node
E9: if CAS(&tail. ptr—next, next, [node. next.count+l])  # Try to link node at the end of the linked list  D12: *pvalue = next.pr—value
Elo: break # Engueue is done. Exit loop DI3: if CAS(&Q—Head, head, [next.ptr, head.count+1])  # Try to swing Head to the next node
Ell: endif DI4: break # Dequeue is done. Exit loop
E12: clse # Tail was not pointing to the last node DIS: endif
El3: CAS(&Q—>Tail, tail, [nextprr, tail.count+1]) # Try to swing Tail to the next node DI6: endif
Eld: endif DI7: endif
El5: endif DI8: endloop
El6:  endloop DI9:  free(head.ptr) # W is safe now to free the old dummy node
E17:  CAS(&Q—Tail. tail, [node, tail.count+1]) # Try to swing Tail to the inserted node D20:  return TRUE # Queue was not empty, dequeue succeeded

Figure 3.3: Structure and operation of a nonblocking concurrent queue [MS98]

latest version of the stack. LL/SC, proposed by [JHBS&T], is used to atomically read,
modify and write a shared memory location. LL returns the current value stored at
the shared memory location. SC checks if any update have occurred to this shared
memory location. If not then the shared memory location is updated successfully.

According to [HSY04] any stack data structure can be made more scalable using
the elimination technique [ST97]. To apply this technique means that if a pop
operation can find a concurrent push operation, then the pop operation can take
the push operation’s value and both operations can return immediately. So the
pop operation eliminate the push operation, because eliminating both operations
has the same effect on the state of the stack as if the push operation was followed

immediately by the pop operation. The number of eliminations will grow with
concurrency.
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Figure 3.4: Normalized execution time for 1000000 push/pop pairs on a multipro-
grammed system, with multiprogramming levels of 1 (a), 2 (b), 3(c).[MS9§]
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Chapter 4

Parallel Algorithm

4.1 MIMD Algorithm

[Wei8T7] proposed MIMD algorithms for solving the Schwarz Alternating Procedure
and the Traveling Salesman Problem. The Schwarz Alternating Procedure solves
a partial differential equation on a domain that is the union of two overlapping
subdomains. In what follows the Traveling Salesman Problem shall be dealt. Given
n cities and the euclidean distance between each pair, find the shortest cycle (closed
tour) that contains each city exactly ones. |Qui83|] proposed MIMD algorithms for
the exact solution and approximation. As algorithms for the exact solution require
a number of processors exponential in n, they are not relevant to practical use.
Karp’s partitioning method finds a closed tour through every city, but generally not
the shortest:

1. halve the set of cities in x- or y-directions, depending on the larger extension.
Both subsets have one common point

2. construct a closed subtour in each of the two subsets

3. combine the subtours by deleting two of the four edges incident to the bisection
point and adding one new edge

Fig. represent the procedure. Obviously the subproblems (step 2) can be com-
puted independently. Only the straightforward step 3 needs some communication
between the processes.

Considering the abovementioned instance, the general proceeding implementing a
MIMD algorithm can be characterized as follows. The implementation consists of
two steps. Depending on the logical relations, the first step divides the algorithm into
parallel processes. The aim is to achieve the most possible parallelism with balanced
computation and communication. The second step assigns the available processors
to the parallel tasks. Obviously this method requires huge effort. Firstly a suitable
parallelization has to be found for a particular problem. Secondly many details of
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18 CHAPTER 4. PARALLEL ALGORITHM

©
(a) (b) ()

Figure 4.1: Karp’s partitioning algorithm (a) 1. step (b) 2. step (c) 3. step

the computer system has to be considered to achieve a satisfactory performance.
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4.2. COMBINATION OF SYNCHRONOUS AND ASYNCHRONOUS MODEL 19

4.2 Combination of Synchronous and Asynchronous
Model

[ST89] combines the benefits of a synchronous and asynchronous programming model.
In SIMD architecture all threads execute the same instruction at the same time. So
that at any given time each thread either executes the current instruction or sits
idle for that instruction. On the other side SIMD programs are deterministic and
avoid synchronization overhead. In a MIMD program each thread may be executing
a different instruction simultaneously. The main drawback of MIMD is organizing
communication among the threads. There are mutual exclusion (scarce resources can
not be shared simultaneously) and producer-consumer problems (one thread needs
the result of another). Typically that problems are not solved with data structure.
Often used techniques for organizing the communication are semaphores, monitors,
message-passing and pipes. The model of [SJ89] which uses data structures, ad-
ditional compiler analysis, or run-time safety checks is proposed in the following.
Program execution begins with a single thread performing arbitrary computations.
At any time it may:

e quit itself
e create a set of sibling threads that are children of the creating thread
e cxecute an operation on shared memory

When a thread P creates a set of sibling threads then the execution of P is sub-
mitted and all the children begin execution asynchronously and in parallel. As soon
as all children have quit themselves, P resumes its execution. All the threads that
exists at any point in time are organized as a tree. Only the threads at the leaves
are active. It is not assumed that all the active threads are equally complex. Op-
erations on shared memory has to behave as serialized, because the interleaving of
operations on shared memory by parallel is unpredictable. In order to guarantee
that the unpredictability does not affect the externally visible behavior of a program
some restrictions are necessary.

The two following techniques can be applied without injuring the previous defined
model. For the purpose of a parent thread P executing in parallel with its children
P1, P2, ..., pp an additional child thread py, has to be created to. pg continues the
computation of the parents thread P. The other technique purposes suspending
the children py, ps, ..., p, of a thread P, executing P for a time, and then resuming
D1, P2, -y Pn- When pq, pa, ..., p, quit themselves, only the control threads are de-
stroyed, but the corresponding state information of the children remain. Thereafter
P can create new children p}, pj, ..., pl, continuing the computation of py,pa, ..., py.
In the proposed programming model the only allowed process synchronization is
termination. This means that the parent thread knows that all of its children have
been terminated, once the parent thread resumes operation.
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20 CHAPTER 4. PARALLEL ALGORITHM

In this model two operations F; and E, must not be causally related if there are
two sibling threads p; that is responsible for F; and p, that is responsible for Ej.
E operates on memory state M, changes the memory state to M’ and returns value
V. Two operations E; and F, are commute with respect to a memory state M if
the order in which they are performed does not matter. Consequently M, = M},
Vie = Vip and Vo, = Vi is required.

EM)— M =V

“ (4.1)

Ei (M) — M, = Vi,

So the minimal restriction is that for any possible serialization order for the oper-
ations any two consecutive operations that are not causally related must commute
with respect to the memory state. Simplifying this restriction results in that any
two operations must be either causally related or commute. This restriction can be
checked at compile time (static checking) or run time (dynamic checking).

Some state information that summarizes the history of operations is added to every
cell. Cells are disjoint regions of the shared memory. The size of the history infor-
mation is proportional to the maximum depth in the process tree of any thread that
has been operating on the cell. The state information is an ordered tuple of pairs
where every p; is either a thread or the special marker *, and every e; is either an
operation class or the special marker *. p; whose depth in the tree is j is responsible
for the operation e; on the cell. * indicates that more than one thread or operation
class has been involved. Every thread also has linked with a set of cell, for which
it is responsible for. When a thread is quit, all the cells in its responsibility set are
added to its parent’s responsibility set. As soon as a thread g at depth k resumes,
all cells in the responsibility set for ¢ must be pruned. In that way the history tuple
for each cell is pruned to only the first k pairs.

The program will be aborted by the safety check if the program contains any two
operations on the same cell that are not causally related and are not of the same
operation class.

Even if this approach can support a large class of interesting problems, the ex-
act range of applications is an open question. The technique can be applied for
remaining a greater efficiency than a SIMD approach and greater safety than a
MIMD approach. This is achieved by allowing asynchronous threads of control, but
restricting shared-memory access.
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4.3 Recurrence Equations

[KST73] proposed the technique recursive doubling for solving an mth-order recur-
rence problem of the form:

.Z'l:fl(.Tl_l,,l’l_m), 2:m+1,7N (42)

where z; is a function of the previous m 's (z;_1,...,Z;—m). The technique splits
the computation into two equally complex subterms. Both subterms require the
same number of instructions, each less than the original function, and types. Pro-
cessing the two subterms can be performed in two separate processors. Continuous
splitting distributes the computation over more processors. This technique yields in
a computational time proportional to log, N distributed on N processors, whereas
a serial algorithm computation time is proportional to N. P identical processors,
each occupying its own memory, can communicate with every other. All processors
obey the same instruction simultaneously, but any processor may be blocked from
performing some instructions. Compared to already developed parallel algorithms
for specific problems, like polynomial evaluation [MP73|, recursive doubling benefits
from its generality. It can be applied for any recurrence problem in the following
form:

ZL‘lzbl

v = fi(vi1) = f(bi, g(ai, zi1)) 2<i<N (43)

that satisfies certain simple restrictions:

1. fis associative: f(x, f(y,2)) = f(f(z,v),2)

2. g distributes over f: gz, f(y.2)) = Flg(z,v). gz )
3. g is semiassociative: there exists some function h such that g(x,g(y,z)) =
g(h(z,y),2)

The general algorithm is given below. The vectors A and B consist of N elements.
Processor (i) stores in its memory the ith component of each vector (A(i) and B(i)).
A(i) and B(4) may be scalars, matrices, lists, etc., depending on the problem. A®(;)
and B®(4) represent respectively A(i) and B(i) after the kth step of the following
algorithm:

e Initialization Step (k = 0):

B(O)(i) =b forl1 <i<N
A(O)(i) =q;for1<i<N (4.4)

A(1) is never referenced and may be initialized arbitrarily
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e Recursion Steps (k= 1,2, ...,log, N):

BW () = f(B* VG, g(A*V(G), BE Y5 —251)) for 281 <i< N
AW (5) = h(A®D(5), Ak=D (5 — 9k=Dy) for 2" +1<i<N

(4.5)

After log, Nth step B(i) contains x; for 1 < ¢ < N. This algorithm is merely
able to process first-order recurrence equations. So as to be able to process also
a mth-order recurrence equation, it has to be converted into a first-order equation
using a slightly more complicated data structure. Appropriate applications comprise
linear recurrence equations, polynomial evaluation, several nonlinear problems, the
determination of the maximum or minimum of N numbers and the solution of

tridiagonal linear equations.

In order to demonstrate the approach, consider the following first-order recurrence

problem:

Given x, = by, find xo, ..., x5, where

T; = Q; ;-1 + bz

We define the function Q(m,n), n < m:

Now we write Eq. [4.6] by:

and apply recursive doubling:

24
Q(2i,1) = zy; = ( 1T a,> Q(i,1) + Q(2i,i + 1)

r=i+1

Fig. shows the computation graph of Q(8,1).

(4.6)
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A
IRISLEICH) A N X g=(0g070g0g)*(04030,0))
T3\ 040,0605 Q14,1 +Q (8,5) T=3

A
Q(4,1)= x4

A
1224 Q(8,5) A
20,03 Q(2,1)+Q(4,3)

A A
=ag0,Q(6,5) +Q(8,7)

(0,403)*(0,0)=x4

6(2.1\) X
T 06 Q(7,7) =001,
+Q(6,6) +Q(2,2)

T=0
be b b b, b bs b: b,

7 s s 4 2
Q(8,8) Q(7,7) Q66 Q55 Q44 Q(33) Q22 allh

(a) (b)

Figure 4.2: (a) Parallel computation of xg in the sequence x; = a;x;_1 + b;. (b)
Parallel computation of zg = Hj.:l al. [KS73]

4.4 Nondeterministic

[UA10] proposed a programming model, called Ly, that is based on nondeterminism
and emergence. The basic concept of emergence is imitated from nature. Con-
sidering parallel systems, e.g. a flack of birds or an ant colony, a large number
of individuals interact asynchronously. These systems solve complex problems and
achieve coordinated and robust behavior, even each individual is following its own
rules. Additionally there exists no global synchronization. In order to be able to
implement such a programming model adverbs and ensembles with object-oriented
inheritance are proposed. An ensemble consists of a flock of individuals. The mem-
bers of an ensemble can be mutable objects or even other ensembles. The ensemble
can be addressed as a whole. Performing an operation on it causes each member of
it to perform that operation in parallel. In order to specify the following questions
of execution strategy adverbs are applied. Which individuals of the flock should
perform an operation? How shall the results, computed by each individual, be
merged and returned? The adverb is appended to the list of arguments. Neverthe-
less an adverb is unnecessary for parallel operations on every individual, returning
an ensemble of the results. Furthermore the ability performing an operation on a
ensemble-as-a-whole is indispensable. Since often there is a decisive disparity.

In order to achieve a familiar programming model Ly is fundamentally constructed
out of familiar syntax combined with object-inheritance. For this purpose the con-
cept of an ensemble has to be integrated in object-based inheritance. It is proposed
to allow every object to be an ensemble. Every object contains slots, a single link to
its parent, and a one-to-many link to its members. A slot contains a name and (a
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reference to) its content. A reference points to either an object or an ensemble. An
object contains a parent reference and zero-or-more slots. An ensemble contains a
parent reference and zero-or-more (references to its) members. Furthermore sending
a message to an object causes a lookup in its ancestors if the object has no matching
slot. The same applies to ensembles if its members do not understand the message.
Otherwise sending a message to an ensemble will cause N parallel invocations, each
per member.

The proposed approach has some undesirable effects. Firstly, considering scenarios
of an empty ensemble is unsatisfying. For instance if a message is sent to an empty
ensemble to do something, this can cause a different behavior than it is sent to
a singleton ensemble. This is the case if the empty ensemble has an ancestor for
that the method is defined differently. That implies braking the sake of consistency.
Secondly, the question arises what to do when a message sent to an ensemble con-
sisting of mutable members is understood by only some of its members. Thirdly,
an operation consisting of an i f(true){do something} condition processed by an en-
semble returns N times true, dependent on the number of its members. As a result
do something is performed N times of each member. Fourthly, the approach will not
be applicable for many algorithms, because there is no ability for exchange between
processes due to the lack of synchronization.
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Chapter 5

Conclusion

This thesis surveyed existing parallel data structures that can be applied to achieve
asynchronous algorithms. Generally, their design is more difficult due to concur-
rency, verifying correctness and scalability. However, once the challenges are hur-
dled parallel data structures constitute the basis to reach a maximum utilization of
processors. Convenient parallel data structures obviate the need for synchronization
techniques such as semaphores or monitors.

Most of the structures considered in this thesis are based on problems that can be
solved recursively. The recursion is modeled by a tree and each of the eventuated
subproblem is assigned to one processor. The processors solving the problems on
one level can operate independently. Solely during merging the subproblems some
interacting is needed. Though for all that the communication problem is solved by
these data structures per se. After devoting huge effort to model the recursive prob-
lem in a convenient way, the algorithm results in high performance and scalability.
The most general MIMD algorithm approach divides the problem into subproblems
depending on their logical relations and assigns the available processors to the paral-
lel tasks. By combination of synchronous and asynchronous model safety checks can
be modeled to detect any two operations on a memory that are not causally related
or commute. Both techniques are convenient to solve any problem that can be di-
vided into subproblems. Due to their generality more effort is required to implement
a proper parallel algorithm compared to the following. Recursive doubling can be
applied for any recurrence equations that fulfill particular restrictions. Whereas the
recursive star-tree is especially suited for search problems.

Furthermore this thesis considers the parallel data structures stack and queue in
contrast to their sequential ones. To evade preemption of processes holding locks
strategies such as preemption-safe locking and nonblocking algorithms employing
atomic primitives are proposed and evaluated. The best performance is obtained by
nonblocking algorithms.
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A completely different approach based on nondeterminism and emergence imitates
natural parallel systems, e.g. a flack of birds. These systems solve complex problems
and achieve robust behavior, even each individual is following its own rule. A
programming model is described using adverbs and ensembles in combination with
object-oriented inheritance. However this proposed model is still immature.
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